

Indole Synthesis via Cobalt(III)-Catalyzed Oxidative Coupling of N-Arylureas and Internal Alkynes

Zhuo-Zhuo Zhang, Bin Liu, Jing-Wen Xu, Sheng-Yi Yan, and Bing-Feng Shi*

Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Supporting Information

ABSTRACT: A mild Co(III)-catalyzed oxidative annulation of Narylureas and internal alkynes has been developed. The use of less electrophilic ureas other than acetamides as directing groups is crucial for the reaction. A broad range of synthetically useful functional groups are compatible with this reaction, thus providing a new opportunity for the synthesis of diverse indoles.

he indole nucleus is prevalent in natural products, biologically active molecules, and pharmaceuticals. Consequently, interest in the synthesis and modification of this privileged structural motif has constantly grown,² after Emil Fischer's landmark achievement of indole synthesis over a century ago.³ One of the most powerful synthetic methods to access these compounds is Larock's indole synthesis via Pdcatalyzed coupling of ortho-haloanilines with alkynes.⁴ More recently, a wealth of research has been directed toward the synthesis of indoles via transition-metal-catalyzed C-H functionalization, and many elegant methods have been developed.2c,d Particularly, the oxidative annulation of anilines or their derivatives with alkynes have received tremendous attention, due to the ready availability of each coupling partner. In 2008, Fagnou and co-workers reported the first Rh(III)catalyzed indole synthesis via the reaction of acetanilides with internal alkynes.⁵ Shortly after, Jiao reported a Pd-catalyzed oxidative coupling of N-nonsubstituted and N-alkyl monosubstituted anilines with electron-deficient alkynes. Ever since then, indole synthesis via the oxidative annulation of alkynes with various N-substituted or N-nonsubstituted anilines catalyzed by second-row transition metal catalysts, such as Rh(III), Pd(II), or Ru(II), have been well investigated by Li, Glorius, Lu, Ackermann, Glorius, Huang, and others (Scheme 1a). 12 In contrast, indole synthesis via C-H activation catalyzed by more sustainable and cost-effective first-row transition metals is very rare. Ackermann reported a Ni(0)-catalyzed annulation of N-(2-pyrimidyl)indoles with internal alkynes. ^{10b} During the preparation of this work, Glorius, Jiao, and Ackermann independently reported the Co(III)-catalyzed redox-neutral synthesis of indoles using Boc-protected hydrazines, N-nitroso, or nitrone as oxidizing directing groups.13

Recently, cobalt-catalyzed C-H functionalization has received increased attention due to its abundance and inexpensiveness. 14,15 As part of our ongoing studies on firstrow transition-metal-catalyzed C-H functionalization, 16 we had found that a cationic high valent Cp*Co(III) complex efficiently catalyzed the C2-selective C-H alkynylation of indoles. 15m To expand the utility of the Cp*Co(III) catalysis

Scheme 1. Indole Synthesis via Transition-Metal-Catalyzed Oxidative Annulation of Anilines with Alkynes

Previous Work Second-row transition metal-catalyzed oxidative annulation cat Pd Rh Ru First-row transition metal-catalyzed oxidative annulation cat. Ni(0) Ackermann^{10b} Glorius, Jiao, Ackermann d) Co(III) [Cp*Co(CO)I2] This Work R = Me

further, we herein report the Co(III)-catalyzed oxidative annulation of N-arylureas and internal alkynes to access diverse indoles. The method features high functional group tolerance, broad substrate scope, high yields, and the use of a costeffective, first-row transition metal catalyst. It was noteworthy that this indole synthesis via oxidative annulation was enabled by the fine-tuning of the electrophilicity of the directing groups, which was mechanistically complementary to the synthesis of quinolines via nucleophilic addition/dehydration recently reported by Li (Scheme 1d).1

Although the oxidative indole synthesis has been well studied in Rh(III) catalysis using acetanilides and alkynes,⁵ we failed to achieve the Co(III) version of this reaction under the same

Received: February 20, 2016 Published: March 29, 2016

Organic Letters Letter

reaction conditions by treatment of acetanilide 1aa with diphenylacetylene 2a. After extensively screening various oxidants and additivies, the desired oxidative annulation product 3aa was only obtained in 5% yield when a copper salt was used, with the nucleophilic addition/dehydration product 4aa produced predominantly (4aa, 15%, Scheme 2).

Scheme 2. Effect of Directing Groups

This is likely ascribable to the intrinsic property of cationic Co(III) complexes in activating the carbonyl group toward nucleophilic attack of organocobalt species. ^{15b,e,17} We reasoned that lowering the electrophilicity might shift the selectivity to indole formation. Consistent with this hypothesis, we were pleased to find that switching acetanilide to an *N*-phenylurea (3a) resulted in the isolation of the indole product (3ab) in 25% yield under our previous conditions. Other commonly used directing groups gave unsatisfactory results (Scheme 2).

Inspired by this promising result, we next sought to improve the efficiency using 1,1-dimethyl-3-phenylurea 1a and diphenylacetylene 2a as coupling partners (Table 1). The screening of oxidants revealed that the yield could be increased to 35% by using $AgBF_4$ (entries 1-3). A slight improvement in yield was

Table 1. Optimization of the Reaction Conditions^a

ida, K - IVIE				Saa, K - Me	
entry	R	oxidant (equiv)	additive (equiv)	t (°C)	yield (%) ^b
1	NMe_2	$Ag_2O (0.4)$	Na ₂ CO ₃ (0.4)	110	19
2	NMe_2	$Ag_2CO_3 (0.4)$	Na_2CO_3 (0.4)	110	28
3	NMe_2	$AgBF_4$ (0.4)	Na_2CO_3 (0.4)	110	35
4	NMe_2	$AgBF_4$ (0.4)	Na_2CO_3 (1)	110	40
5	NMe_2	$AgBF_4$ (0.4)	NaH_2PO_4 (1)	110	44
6	NMe_2	$AgBF_4(1)$	NaH_2PO_4 (1)	110	65
7	NMe_2	$Ag_2CO_3(1)$	NaH_2PO_4 (1)	110	70
8	NMe_2	$Ag_2CO_3(1)$	NaH_2PO_4 (2)	110	76
9	NMe_2	Ag_2CO_3 (1.2)	NaH_2PO_4 (2)	110	80
10	NMe_2	Ag_2CO_3 (1.2)	NaH_2PO_4 (2)	130	84
11 ^c	NMe_2	Ag_2CO_3 (1.2)	NaH_2PO_4 (2)	130	94 ^d
12 ^c	Me	Ag_2CO_3 (1.2)	NaH_2PO_4 (2)	130	3aa, 29 ^d
					4aa, 16 ^d

"Reaction conditions: **1a** (0.10 mmol), **2a** (0.15 mmol), [CoCp*-(CO)I₂] (10 mol %), AgSbF₆ (20 mol %) in DCE (1 mL). ^{b1}H NMR yield using 1,3,5-trimethoxybenzene as the internal standard. ^c**1a** (0.15 mmol), **2a** (0.10 mmol). ^dIsolated yield.

observed when the amount of Na₂CO₃ was increased from 0.4 to 1.0 equiv (entry 4). NaH₂PO₄ was found to be the optimal additive, giving indole 3ab in 44% yield (entry 5). Next, we increased the quantity of the AgBF₄ from 40 to 100 mol %, and a significant improvement was achieved (entry 6). Further tuning the amount of oxidants and additives revealed that the reaction proceeded better in the presence of 2 equiv of NaH₂PO₄ and 1.2 equiv of Ag₂CO₃ (entries 7–9). In addition, the reaction temperature was also examined, and the yield could be improved to 84% at 130 °C (entry 10). Finally, the indole product 3ab could be obtained in 94% isolated yield by changing the ratio of lab and 2a (entry 11). As expected, when switching an N-phenylurea to the acetanilide as a substrate under these coupling conditions, indole 3aa was obtained in a reduced yield (29%) along with the nucleophilic addition/ dehydration product 4aa (entry 12).

With the optimal reaction conditions in hand, we next tested the scope of the *N*-arylureas using diphenylacetylene **2a** as the annulation partner (Figure 1). In general, indoles were

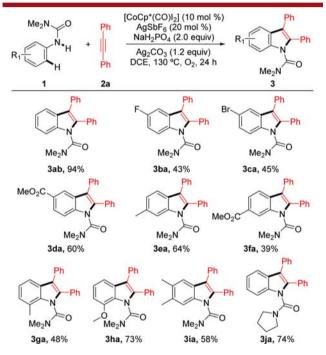


Figure 1. Scope of N-arylureas.

successfully obtained from a broad range of substrates in moderate to high yields with ortho-regioselectivity. Both electron-donating and -withdrawing substituents were tolerated. A number of synthetically useful functional groups, such as fluoro (3ba), bromo (3ca), methoxycarbonyl (3da and 3fa), and methoxy (3ha), were compatible with this reaction. The tolerance of halides was particularly important, since such substituents could be further transformed to other functional groups via a traditional cross-coupling reaction. We also found that this protocol tolerates the presence of ortho substituents well. As demonstrated, N-arylureas bearing methyl and methoxyl in the ortho position reacted smoothly to give the desired indole products 3ga and 3ha. Furthermore, the annulation of disubstitued substrate 1ia could also afford the desired product 3ia in moderate yield. Moreover, the reaction is not limited to the N,N-dimethyl ureas. When N-pyrrolyl urea Organic Letters Letter

1ja was reacted with diphenylacetylene 2a, indole 3ja was obtained in 74% yield.

Subsequently, we evaluated the substrate scope with respect to internal alkynes (Figure 2). The reaction was compatible

Figure 2. Scope of alkynes.

with electron-donating substituents at the *para*-position on the benzene rings of internal alkynes, such as Me-, MeO-, "Bu-, and 'Bu-groups (5a-5d), providing the corresponding indoles in generally good yields (42%-75%). In addition, halogen-substituted benzene rings of internal alkynes proceeded to give the desired product in moderate yields (5e, 63% and 5f, 48%). Furthermore, a heterocyclic thiophene motif also served as a suitable substrate as exemplified by the synthesis of 5g. In addition, 1-phenyl-1-propyne coupled in high regioselectivity, and only one single regioisomer was detected (5h). Unfortunately, terminal alkynes were not compatible with this protocol.

To gain some insight into the mechanism, a series of deterium labeling experiments were carried out (Scheme 3). Two separate experiments using 1ab and 1ab-[\mathbf{d}_{5}] were carried out, from which a $k_{\rm H}/k_{\rm D}$ value of 1.6 was found on the basis of $^{1}{\rm H}$ NMR (Scheme 3a). Further, a 1:1 mixture of 1ab and 1ab-

Scheme 3. Mechanism Studies

a)
$$\begin{array}{c} H \\ NMe_2 \\ D_5 \\ \hline \end{array}$$
 $\begin{array}{c} NMe_2 \\ NMe_2 \\ \end{array}$ $\begin{array}{c} + Ph \\ \hline \end{array}$ $\begin{array}{c} Ph \\ \hline \end{array}$ $\begin{array}{c} Standard\ conditions \\ \hline \end{array}$ $\begin{array}{c} 45\ min \\ \hline \end{array}$ $\begin{array}{c} KIE = 1.6 \\ \hline \end{array}$ $\begin{array}{c} KIE = 1.6 \\ \hline \end{array}$ $\begin{array}{c} NMe_2 \\ \hline \end{array}$ $\begin{array}{c} NMe_2 \\ \hline \end{array}$ $\begin{array}{c} 2a \\ \hline \end{array}$ $\begin{array}{c} 2a \\ \hline \end{array}$ $\begin{array}{c} Standard\ conditions \\ \hline \end{array}$ $\begin{array}{c} A5\ min \\ \hline \end{array}$ $\begin{array}{c} A5\ min \\ \hline \end{array}$ $\begin{array}{c} NMe_2 \\ \hline \end{array}$ $\begin{array}{c} A5\ min \\ \hline \end{array}$ $\begin{array}{c} A5\ min \\ \hline \end{array}$ $\begin{array}{c} NMe_2 \\ \hline \end{array}$ $\begin{array}{c} NMe_2 \\ \hline \end{array}$ $\begin{array}{c} A5\ min \\ \hline \end{array}$ $\begin{array}{c} A5\ min \\ \hline \end{array}$ $\begin{array}{c} NMe_2 \\ \hline \end{array}$ $\begin{array}{c} NM$

[$\mathbf{d_5}$] was then treated and gave a consistent value of $k_{\rm H}/k_{\rm D}=3.3$ (Scheme 3b), indicating that C–H activation is likely turnover-limiting in coupling systems. To check the reversibility of the C–H activation step, $\mathbf{1ab}$ -[$\mathbf{d_5}$] was heating in MeOH under the oxidative coupling conditions in the absence of diphenylacetylene, and H/D scrambling was not observed here (Scheme 3c). This suggested irreversibility of C–H activation. This observation is in sharp contrast to Glorius and Jiao's observations. ^{13a,b}

On the basis of our mechanistic experiments and previous reports, 5b,12d,15i a plausible catalytic cycle is depicted in Scheme 4. First, an active cationic Co(III) catalyst is generated upon

Scheme 4. Proposed Reaction Mechanism

treatment of $[Cp*Co(CO)I_2]$ with $AgSbF_6$. Cobalt-mediated irreversible C–H bond activation of N-arylurea affords a six-membered metallacyclic intermediate A. Alkyne coordination and migratory insertion of the aryl group generates a Co(III) alkenyl species B. Intermediate C is formed via base-assisted elimination of HX. C–N bond reductive elimination delivers indole A0 along with a A0 species A0. The catalytic cycle is completed when A0 is reoxidized to A0. When acetanilide A1 are was used as a substrate, quinolone A1 awas generated via nucleophilic addition of metallacyclic A1 followed by dehydration.

In conclusion, we have developed the Cp*Co(III)-catalyzed oxidative annulation of *N*-arylureas and internal alkynes for the construction of indoles. The use of less electrophilic ureas other than acetamides as directing groups is crucial for the reaction. This reaction proceeds under mild conditions and tolerates a wide range of functional groups, providing a straightforward access to diverse indoles. In addition, when unsymmetrical internal alkynes were employed, the annulation adducts were obtained with high regioselectivity.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b00494.

Experimental details and spectral data for all new compounds (PDF)

Organic Letters Letter

AUTHOR INFORMATION

Corresponding Author

*E-mail: bfshi@zju.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from the National Basic Research Program of China (2015CB856600), the NSFC (21572201, 21422206, 21272206), and the Fundamental Research Funds for the Central Universities (2015XZZX004-03) is gratefully acknowledged.

REFERENCES

- (1) (a) Sundberg, R. J. *Indoles*; Academic Press: San Diego, CA, 1996. (b) Kochanowska-Karamyan, A. J.; Hamann, M. T. *Chem. Rev.* **2010**, 110, 4489.
- (2) For reviews on transition-metal-catalyzed indole synthesis, see: (a) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. (b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111 (5), PR215. (c) Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 9220. (d) Guo, T.-L.; Huang, F.; Yu, L.-K.; Yu, Z.-K. Tetrahedron Lett. 2015, 56, 296.
- (3) Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16, 2241.
- (4) For selected examples of Larock-type indole synthesis, see: (a) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689. (b) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652. (c) Phetrak, N.; Rukkijakan, T.; Chuawong, P. J. J. Org. Chem. 2013, 78, 12703.
- (5) (a) Stuart, D. R.; Bertrand-Laperle, M.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474. (b) Stuart, D. R.; Alsabeh, P.; Kuhn, M.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 18326. (c) Huestis, M. P.; Chan, L.; Stuart, D. R.; Fagnou, K. Angew. Chem., Int. Ed. 2011, 50, 1338
- (6) Shi, Z.; Zhang, C.; Li, S.; Pan, D.; Ding, S.; Cui, Y.; Jiao, N. Angew. Chem., Int. Ed. **2009**, 48, 4572.
- (7) [Rh]: (a) Su, Y.; Zhao, M.; Han, K.; Song, G.; Li, X. Org. Lett. 2010, 12, 5462. (b) Chen, J.; Song, G.; Pan, C.-L.; Li, X. Org. Lett. 2010, 12, 5426. (c) Kong, L.; Xie, F.; Yu, S.; Qi, Z.; Li, X. Chin. J. Catal. 2015, 36, 925. (d) Tang, G.-D.; Pan, C.-L.; Li, X. Org. Chem. Front. 2016, 3, 87. [Pd]: (e) Chen, J.-L.; Pang, Q. Y.; Sun, Y. B.; Li, X. J. Org. Chem. 2011, 76, 3523.
- (8) [Rh]: (a) Wang, H.; Grohmann, C.; Nimphius, C.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 19592. (b) Zhao, D.; Shi, Z.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 12426.
- (9) [Pd]: (a) Zhou, F.; Han, X.-L.; Lu, X.-Y. Tetrahedron Lett. **2011**, 52, 4681. (b) Zhou, Z.; Liu, G.-X.; Chen, Y.; Lu, X.-Y. Adv. Synth. Catal. **2015**, 357, 2944.
- (10) (a) Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764.(b) Song, W.; Ackermann, L. Chem. Commun. 2013, 49, 6638.
- (11) [Rh]: (a) Wang, C.; Sun, H.; Fang, Y.; Huang, Y. Angew. Chem., Int. Ed. 2013, 52, 5795. (b) Wang, C.; Huang, Y. Org. Lett. 2013, 15, 5294. (c) Zhang, G.; Yu, H.; Qin, G.; Huang, H. M. Chem. Commun. 2014, 50, 4331. [Ru]: (d) Zhang, Z.; Jiang, H.; Huang, Y. Org. Lett. 2014, 16, 5976.
- (12) [Rh]: (a) Liu, B.; Song, C.; Sun, C.; Zhou, S.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 16625. (b) Zheng, L.; Hua, R. Chem. Eur. J. 2014, 20, 2352. (c) Muralirajan, K.; Cheng, C. H. Adv. Synth. Catal. 2014, 356, 1571. (d) Kathiravan, S.; Nicholls, I. A. Chem. Commun. 2014, 50, 14964. (e) Zhou, B.; Yang, Y.; Tang, H.; Du, J.; Feng, H.; Li, Y. Org. Lett. 2014, 16, 3900. (f) Tao, P.-Y.; Jia, Y.-X. Chem. Commun. 2014, 50, 7367. (g) Matsuda, T.; Tomaru, Y. Tetrahedron Lett. 2014, 55, 3302. (h) Hoshino, Y.; Shibata, Y.; Tanaka, K. Adv. Synth. Catal. 2014, 356, 1577. (i) Fan, Z.-L.; Song, S.-S.; Li, W.; Zhang, A. Org. Lett. 2015, 17, 310. (j) Allu, S.; Kumara Swamy, K. C. Adv. Synth. Catal. 2015, 357, 2665. (k) Kim, Y.; Hong, S. Chem. Commun. 2015, 51,

11202. [Pd]: (l) Manna, M. K.; Hossian, A.; Jana, R. Org. Lett. 2015, 17, 672.

- (13) (a) Lerchen, A.; Vasquez-Cespedes, S.; Glorius, F. Angew. Chem., Int. Ed. 2016, 55, 3208. (b) Liang, Y. J.; Jiao, N. Angew. Chem., Int. Ed. 2016, 55, 4035. (c) Wang, H.; Moselage, M.; González, M. J.; Ackermann, L. ACS Catal. 2016, 6, 2705.
- (14) For recent reviews on cobalt-catalyzed C-H functionalization, see: (a) Kozhushkov, S. I.; Potukuchi, H. K.; Ackermann, L. Catal. Sci. Technol. 2013, 3, 562. (b) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208. (c) Ackermann, L. J. Org. Chem. 2014, 79, 8948. (d) Hyster, T. K. Catal. Lett. 2015, 145, 458. (e) Yoshikai, N. ChemCatChem 2015, 7, 732. (f) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498.
- (15) For selected examples, see: (a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2013, 52, 2207. (b) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. (c) Yu, D.-G.; Gensch, T.; de Azambuja, F.; Vásquez-Céspedes, S.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722. (d) Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491. (e) Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 4508. (f) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 3635. (g) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 8551. (h) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490. (i) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17, 2400. (j) Park, J.; Chang, S. Angew. Chem., Int. Ed. 2015, 54, 14103. (k) Pawar, A. B.; Chang, S. Org. Lett. 2015, 17, 660. (1) Patel, P.; Chang, S. ACS Catal. 2015, 5, 853. (m) Zhang, Z.-Z.; Liu, B.; Wang, C.-Y.; Shi, B.-F. Org. Lett. 2015, 17, 4094. (n) Liang, Y.; Liang, Y.-F.; Tang, C.; Yuan, Y.; Jiao, N. Chem. - Eur. J. 2015, 21, 16395. (o) Liu, X.-G.; Zhang, S.-S.; Jiang, C.-Y.; Wu, J.-Q.; Li, Q.; Wang, H. Org. Lett. 2015, 17, 5404. (p) Grigorjeva, L.; Daugulis, O. Angew. Chem., Int. Ed. 2014, 53, 10209. (q) Grigorjeva, L.; Daugulis, O. Org. Lett. 2015, 17, 1204. (r) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2016, 55, 1844. (s) Wang, S.; Hou, J.-T.; Feng, M.-L.; Zhang, X.-Z.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2016, 52, 2709. (t) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 272. (u) Zhang, J.-T.; Chen, H.; Lin, C.; Liu, Z.-X.; Wang, C.; Zhang, Y.-H. J. Am. Chem. Soc. 2015, 137, 12990.
- (16) (a) Li, X.; Liu, Y.-H.; Gu, W.-J.; Li, B.; Chen, F.-J.; Shi, B.-F. Org. Lett. 2014, 16, 3904. (b) Chen, F.-J.; Liao, G.; Li, X.; Wu, J.; Shi, B.-F. Org. Lett. 2014, 16, 5644. (c) Liu, Y.-J.; Liu, Y.-H.; Yin, X.-S.; Gu, W.-J.; Shi, B.-F. Chem. - Eur. J. 2015, 21, 205. (d) Yin, X.-S.; Li, Y.-C.; Yuan, J.; Gu, W.-J.; Shi, B.-F. Org. Chem. Front. 2015, 2, 119. (e) Zhao, S.; Chen, F.-J.; Liu, B.; Shi, B.-F. Sci. China: Chem. 2015, 58, 1302. (f) Yan, S.-Y.; Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Shi, B.-F. Chem. Commun. 2015, 51, 4069. (g) Li, B.; Liu, B.; Shi, B.-F. Chem. Commun. 2015, 51, 5093. (h) Liu, Y.-J.; Liu, Y.-H.; Yan, S.-Y.; Shi, B.-F. Chem. Commun. 2015, 51, 6388. (i) Yan, S.-Y.; Liu, Y.-J.; Liu, B.; Liu, Y.-H.; Zhang, Z.-Z.; Shi, B.-F. Chem. Commun. 2015, 51, 7341. (j) Liu, Y.-J.; Zhang, Z.-Z.; Yan, S.-Y.; Liu, Y.-H.; Shi, B.-F. Chem. Commun. 2015, 51, 7899. (k) Rao, W.-H.; Shi, B.-F. Org. Lett. 2015, 17, 2784. (l) Liu, Y.-H.; Liu, Y.-J.; Yan, S.-Y.; Shi, B.-F. Chem. Commun. 2015, 51, 11650. (m) Zhao, S.; Liu, Y.-J.; Yan, S.-Y.; Chen, F.-J.; Zhang, Z.-Z.; Shi, B.-F. Org. Lett. 2015, 17, 3338. (n) Zhao, S.; Yuan, J.; Li, Y.-C.; Shi, B.-F. Chem. Commun. 2015, 51, 12823.
- (17) Kong, L.; Yu, S.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 588.